

[9] Dutrone H, Dauchy FA, Cazanave C, Rougie C, Lafarie-Castet S, Couprie B, et al. Candida prosthetic infections: case series and literature review. *Scand J Infect Dis.* 2010;42:890-895. doi:10.3109/00365548.2010.498023.

[10] Hwang BH, Yoon JY, Nam CH, Jung KA, Lee SC, Han CD, et al. Fungal periprosthetic joint infection after primary total knee replacement. *J Bone Joint Surg Br.* 2012;94:656-659. doi:10.1302/0301-620X.94B5.28125.

[11] Ueng SWN, Lee C-Y, Hu C, Hsieh P-H, Chang Y. What is the success of treatment of hip and knee candidal periprosthetic joint infection? *Clin Orthop Relat Res.* 2013;471:3002-3009. doi:10.1007/s11999-013-3007-6.

[12] Baré J, MacDonald SJ, Bourne RB. Preoperative evaluations in revision total knee arthroplasty. *Clin Orthop Relat Res.* 2006;446:40-44. doi:10.1097/01.blo.0000218727.14097.d5.

[13] Gallo J, Kolar M, Dendis M, Loveckova Y, Sauer P, Zapletalova J, et al. Culture and PCR analysis of joint fluid in the diagnosis of prosthetic joint infection. *New Microbiol.* 2008;31:97-104.

[14] Shanmugasundaram S, Ricciardi BF, Briggs TWR, Sussmann PS, Bostrom MP. Evaluation and management of periprosthetic joint infection - an international, multicenter study. *HSS J.* 2014;10:36-44. doi:10.1007/s11420-013-9366-4.

[15] Gomez E, Cazanave C, Cunningham SA, Greenwood-Quaintance KE, Steckelberg JM, Uhl JR, et al. Prosthetic joint infection diagnosis using broad-range PCR of biofilms dislodged from knee and hip arthroplasty surfaces using sonication. *J Clin Microbiol.* 2012;50:3501-3508. doi:10.1128/JCM.00834-12.

[16] Spangehl MJ, Masri BA, O'Connell JX, Duncan CP. Prospective analysis of preoperative and intraoperative investigations for the diagnosis of infection at the sites of two hundred and two revision total hip arthroplasties. *J Bone Joint Surg Am.* 1999;81:672-683.

[17] Basu S, Bose C, Ojha N, Das N, Das J, Pal M, et al. Evolution of bacterial and fungal growth media. *Bioinformation.* 2015;11:182-184. doi:10.6026/97320630011182.

[18] Bosshard PP. Incubation of fungal cultures: how long is long enough? *Mycoses.* 2011;54:e529-e545. doi:10.1111/j.1439-0507.2010.01977.x.

[19] Williamson MA, Snyder LM, Wallach JB. *Wallach's Interpretation of Diagnostic Tests.* Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2011.

[20] Fihman V, Hannouche D, Bousson V, Bardin T, Lioté F, Raskine L, et al. Improved diagnosis specificity in bone and joint infections using molecular techniques. *J Infect.* 2007;55:510-517. doi:10.1016/j.jinf.2007.09.001.

[21] Marin M, Garcia-Lechuz JM, Alonso P, Villanueva M, Alcalá L, Gimeno M, et al. Role of universal 16S rRNA gene PCR and sequencing in diagnosis of prosthetic joint infection. *J Clin Microbiol.* 2012;50:583-589. doi:10.1128/JCM.00170-11.

[22] Clarridge JE. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. *Clin Microbiol Rev.* 2004;17:840-862. doi:10.1128/CMR.17.4.840-862.2004.

[23] Khot PD, Ko DL, Fredricks DN. Sequencing and analysis of fungal rRNA operons for development of broad-range fungal PCR assays. *Appl Environ Microbiol.* 2009;75:1559-1565. doi:10.1128/AEM.02383-08.

[24] Tarabichi M, Shohat N, Goswami K, Alvand A, Silibovsky R, Belden K, et al. Diagnosis of periprosthetic joint infection: the potential of next-generation sequencing. *J Bone Joint Surg Am.* 2018;100:147-154. doi:10.2106/JBJS.17.00434.

Authors: Feng-Chih Kuo, Giovanni Riccio, Ilaira Repetto

QUESTION 2: Should patients with periprosthetic joint infections (PJIs) caused by a fungus undergo the typical two-week antimicrobial holiday prior to reimplantation?

RECOMMENDATION: There is no conclusive evidence to support the use of an antimicrobial holiday period prior to reimplantation in case of fungal PJI treated with staged revision.

LEVEL OF EVIDENCE: Limited

DELEGATE VOTE: Agree: 90%, Disagree: 5%, Abstain: 5% (Super Majority, Strong Consensus)

RATIONALE

The review of the literature on fungal PJIs treated with staged revision shows only 8 retrospective cohort studies (level of evidence IV) and 13 case reports (level of evidence V) (Table 1). We have been able to find only 21 papers (104 patients) regarding fungal PJI treated with two-stage exchange arthroplasty. In 68 cases (from 14 different studies), a drug holiday of at least two weeks was applied before reimplantation. No drug holiday was prescribed in two cases. For the remaining 34 patients, there was no data available about this aspect. Candida spp. (especially *albicans* or *parapsilosis*) was the main causal agent. Most patients had at least six weeks of systemic antifungal treatment after first operation, in agreement with the 2013 Consensus Conference conclusions. Following reimplantation, antifungal agents were continued for from two weeks to six months in six studies (69 patients). The agent most frequently used was fluconazole. Among reviewed papers, most authors seem to prefer a drug holiday of two or more weeks before second surgical stage. This approach is consistent with the conclusion of the previous Consensus Conference in 2013. No study compares the results of the two different strategies.

In conclusion, antifungal therapy could be stopped before reimplantation but there is no high-quality evidence to support this opinion.

REFERENCES

[1] Hennessy MJ. Infection of a total knee arthroplasty by *Candida parapsilosis*. A case report of successful treatment by joint reimplantation with a literature review. *J Knee Surg.* 1996;9:133-136.

[2] Ramamohan N, Zeineh N, Grigoris P, Butcher I. *Candida glabrata* infection after total hip arthroplasty. *J Infect.* 2001;42:74-76. doi:10.1053/jinf.2000.0763.

[3] Yang SH, Pao JL, Hang YS. Staged reimplantation of total knee arthroplasty after *Candida* infection. *J Arthroplasty.* 2001;16:529-532. doi:10.1054/arth.2001.21458.

[4] Baumann PA, Cunningham B, Patel NS, Finn HA. *Aspergillus fumigatus* infection in a mega prosthetic total knee arthroplasty: salvage by staged reimplantation with 5-year follow-up. *J Arthroplasty.* 2001;16:498-503. doi:10.1054/arth.2001.21505.

[5] Phelan DM, Osmon DR, Keating MR, Hanssen AD. Delayed reimplantation arthroplasty for candidal prosthetic joint infection: a report of 4 cases and review of the literature. *Clin Infect Dis.* 2002;34:930-938. doi:10.1086/339212.

[6] Cutrone AF, Shah M, Himes MS, Miladore MA. Rhodotorula minuta: an unusual fungal infection in hip-joint prosthesis. *Am J Orthop.* 2002;31:137-140.

[7] Wyman J, McGough R, Limbird R. Fungal infection of a total knee prosthesis: successful treatment using articulating cement spacers and staged reimplantation. *Orthopedics.* 2002;25:1391-1394; discussion 1394.

[8] Azzam K, Parviz J, Jungkind D, Hanssen A, Fehring T, Springer B, et al. Microbiological, clinical, and surgical features of fungal prosthetic joint infections: a multi-institutional experience. *J Bone Joint Surg Am.* 2009;91 Suppl 6:142-149. doi:10.2106/JBJS.L.00574.

[9] Dutrone H, Dauchy FA, Cazanave C, Rougie C, Lafarie-Castet S, Couprie B, et al. Candida prosthetic infections: case series and literature review. *Scand J Infect Dis.* 2010;42:890-895. doi:10.3109/00365548.2010.498023.

[10] Wu MH, Hsu KY. Candidal arthritis in revision knee arthroplasty successfully treated with sequential parenteral-oral fluconazole and amphotericin B-loaded cement spacer. *Knee Surg Sports Traumatol Arthrosc.* 2011;19:273-276. doi:10.1007/s00167-010-1211-4.

[11] Graw B, Woolson S, Huddleston JI. *Candida* infection in total knee arthroplasty with successful reimplantation. *J Knee Surg.* 2010;23:169-174.

[12] Hwang BH, Yoon JY, Nam CH, Jung KA, Lee SC, Han CD, et al. Fungal periprosthetic joint infection after primary total knee replacement. *J Bone Joint Surg Br.* 2012;94:656-659. doi:10.1302/0301-620X.94B5.28125.

[13] Anagnostakos K, Kelm J, Schmitt E, Jung J. Fungal periprosthetic hip and knee joint infections clinical experience with a 2-stage treatment protocol. *J Arthroplasty.* 2012;27:293-298. doi:10.1016/j.arth.2011.04.044.

TABLE 1. Retrospective cohort studies regarding the recommendation duration of systemic antifungal agents for fungal periprosthetic joint infection treated with two-stage exchange arthroplasty

Author	Year	N	Organism	Length of Anti-fungal Therapy	Length of Interstage	Drug Holiday	Outcome
Hennessy [1]	1996	1	<i>C. parapsilosis</i>	13 w	not known	not known	cured
Ramamohan [2]	2000	1	<i>C. glabrata</i>	6 w	6 w	0	cured
Yang [3]	2001	1	<i>C. parapsilosis</i>	10 w	3 m	2 w	cured
Baumann [4]	2001	1	<i>A. fumigatus</i>	6 w	8 w	2 w	cured
Phelan [5]	2002	10	Candida spp.	25 w (2-49) (8 days-17.7 m)	6.7 m (8 days-17.7 m)	1.4 m	8 cured
Cutrona [6]	2002	1	<i>R. minuta</i>	not known	12 m	not known	cured
Wyman [7]	2002	1	<i>C. tropicalis</i>	not known	not known	not known	cured
Azzam [8]	2009	31 (19 with two-stage)	<i>C. albicans</i> (20) <i>C. parapsilosis</i> (4) both above (3) <i>C. glabrata</i> (1) <i>Aspergillus</i> (1) Others (2)	6 w after RA 6 m after reimplantation	7 m (range 2-14)	≥2 w	9 cured/ 10 failed
Dutronc [9]	2010	7 (3 with two-stage)	<i>C. albicans</i> (4) <i>C. parapsilosis</i> (2) <i>C. guilliermondii</i> (1)	not known	not known	not known	1 cured/ 2 failed
Wu and Hsu [10]	2011	1	<i>C. albicans</i>	17 w after RA 6 m after reimplantation	6 m	7 w	cure
Yilmaz	2011	1	<i>A. fumigatus</i>	6 w	4 m	10 w	cure
Graw [11]	2010	2	<i>C. albicans</i>	12 w	not known	8 w-1 y	failed
Hwang [12]	2012	28	<i>C. parapsilosis/albicans</i>	≥6 w after RA A maximum of 6 m after reimplantation	9.5 w (6-24)	not known	22 cured/ 4 failed
Anagnastakos [13]	2012	5	<i>C. albicans</i> (2) <i>C. lypolitica</i> <i>C. albicans+C. glabrata</i> <i>C. glabrata</i>	6 w	12.8 w (12-14)	6.8 w (6-8)	cured
Kuiper [14]	2013	8 (4 with two-stage)	<i>C. albicans</i> (6) <i>C. albicans + C. glabrata</i> <i>C. parapsilosis</i> (1)	8.75 w (1w-5mo)	6.5 m (4-14 m)	>8 w (8-50w)	2 cured/ 2 failed
Deelstra [15]	2013	1	<i>C. albicans</i>	not known	not known	no	cured
Ueng [16]	2013	8	Candida spp	14 m after RA (3-18 m) 2.5 m after reimplantation	not known	≥2 w	8 cured/ 1 deceased

Author	Year	N	Organism	Length of Anti-fungal Therapy	Length of Interstage	Drug Holiday	Outcome
Reddy [17]	2013	1	<i>C. tropicalis</i>	18	20 w	2 w	cured
Wang [18]	2015	5	Candida spp	8 w after RA (6-10) 2 w after reimplantation	6 m	>2 m	5 cured
Geng [19]	2016	8	<i>C. albicans</i> (3) Mould <i>C. freyschussii</i> <i>Aspergillus</i> spp <i>C. parapsilosis</i> <i>C. glabrata</i>	2.8 m after RA (1.5-6) 1m after reimplantation (1m-46 days)	4.3 m (3-7)	6 w (2w-10w)	7 cured
Sebastian [20]	2017	1	<i>C. tropicalis</i>	24 w	9 m	3 m	cure

RA, resection arthroplasty

[14] Kuiper JWP, van den Bekerom MPJ, van der Stappen J, Nolte PA, Colen S. 2-stage revision recommended for treatment of fungal hip and knee prosthetic joint infections. *Acta Orthop.* 2013;84:517-523. doi:10.3109/17453674.2013.859422.

[15] Deelstra JJ, Neut D, Jutte PC. Successful treatment of *Candida albicans*-infected total hip prosthesis with staged procedure using an antifungal-loaded cement spacer. *J Arthroplasty.* 2013;28:374.e5-e8. doi:10.1016/j.arth.2012.04.034.

[16] Ueng SWN, Lee CY, Hu C, Hsieh PH, Chang Y. What is the success of treatment of hip and knee candidal periprosthetic joint infection? *Clin Orthop Relat Res.* 2013;471:3002-3009. doi:10.1007/s11999-013-3007-6.

[17] Reddy KJ, Shah JD, Kale RV, Reddy TJ. Fungal prosthetic joint infection after total knee arthroplasty. *Indian J Orthop.* 2013;47:526-529. doi:10.4103/0019-5413.118213.

[18] Wang QJ, Shen H, Zhang XL, Jiang Y, Wang Q, Chen YS, et al. Staged reimplantation for the treatment of fungal peri-prosthetic joint infection following primary total knee arthroplasty. *Orthop Traumatol Surg Res.* 2015;101:151-156. doi:10.1016/j.otsr.2014.11.014.

[19] Geng L, Xu M, Yu L, Li J, Zhou Y, Wang Y, et al. Risk factors and the clinical and surgical features of fungal prosthetic joint infections: A retrospective analysis of eight cases. *Exp Ther Med.* 2016;12:991-999. doi:10.3892/etm.2016.3353.

[20] Sebastian S, Malhotra R, Pande A, Gautam D, Xess I, Dhawan B. Staged reimplantation of a total hip prosthesis after co-infection with *Candida tropicalis* and *Staphylococcus haemolyticus*: a case report. *Mycopathologia.* 2017. doi:10.1007/s11046-017-0177-x.

• • • • •

Authors: Li Cao, Feng Chih Kuo

QUESTION 3: Can debridement, antibiotics and implant retention (DAIR) be used to treat acute fungal periprosthetic joint infections (PJIs)?

RECOMMENDATION: DAIR has a relatively high failure rate in fungal PJIs, especially for immunocompromised patients. DAIR should be reserved for patients with truly acute PJIs after an index arthroplasty and in healthy patients (Type A). If DAIR is performed for fungal PJIs, consideration should be given to anti-fungal suppression therapy.

LEVEL OF EVIDENCE: Moderate

DELEGATE VOTE: Agree: 91%, Disagree: 5%, Abstain: 4% (Super Majority, Strong Consensus)

RATIONALE

PJIs caused by fungal pathogens are a rare occurrence accounting for <1% of all PJIs [1]. Surgical treatments for fungal PJIs include DAIR, one-stage exchange arthroplasty and two-stage exchange arthroplasty. The difficulty in the treatment of fungal PJIs can be attributed to the rarity of fungal PJIs that have confined our understanding of this infectious entity and the often-immunocompromised status of patients who develop these infections in the first place. Although some general agreements have been reached with recommendations proposed by the International Consensus Meeting (ICM) and

Infectious Diseases Society of America (IDSA) [2,3], many issues related to fungal PJIs remain unresolved. The most optimal surgical option for patients with fungal PJIs, the dose and the type of antifungals to be added to the polymethyl methacrylate (PMMA) spacer, the optimal duration of systemic antifungal treatment and many other issues still remain unanswered.

In addition, despite offering a potential explanation above, the exact reason for the less optimal outcomes of treatment of fungal PJIs remains unknown. It is, however, known that patients with