

extremity [3,8,11]. However, shoulder-specific data is limited. The shoulder presents a unique challenge in diagnosis due to frequent culture growth of low-virulent organisms [12-14].

To evaluate the existing literature for use of synovial WBC and differential in the diagnosis of shoulder PJI, a PubMed search was undertaken with the query: "(periprosthetic OR PJI) AND shoulder AND (white OR WBC) AND (synovial OR aspirate)." This search provided three articles for review of which one was pertinent [15].

In a multicenter analysis of *C. acnes* PJI cases (as defined by original Musculoskeletal Infection Society (MSIS) criteria [16]), Nodzo et al. described the characteristics of the host inflammatory response in 18 knees, 12 hips and 35 shoulders [15]. They identified a significantly lower mean value for synovial WBC count for the shoulder (750 cells/ mm³) compared to the knee (19,950 cells/ mm³). This was, however, similar to the average reported for the infected hips (500 cells/ mm³). Interestingly, the neutrophil percentage was similar between shoulders (90%) and knees (92.5%), while significantly lower for hips (61.0%). Unfortunately, while providing some insight into the inflammatory response to a low-virulent pathogen, this limited dataset was unable to calculate a diagnostic threshold or calculate sensitivity and specificity of synovial WBC for diagnosing PJI. As this analysis demonstrates a response commiserate with low-virulent infections of the hip, the diagnostic values reported for hip PJI (3,000 cells / mm³ and 80% PMN) [3] may be the best current alternative.

WBC count and PMN percentage can remain high up to three months after arthroplasty. This limits the test utility in the first six postoperative weeks as a modified threshold has not been identified for the shoulder [17,18].

Compounding the uncertainty about the WBC count and PMN percentages as metrics that indicate shoulder PJI is the fact that shoulder synovial fluid aspirations frequently yield little to no fluid, a high percentage of "dry taps" [19,20].

REFERENCES

- [1] Ahmad SS, Shaker A, Saffarini M, Chen AF, Hirschmann MT, Kohl S. Accuracy of diagnostic tests for prosthetic joint infection: a systematic review. *Knee Surg Sports Traumatol Arthrosc.* 2016;24:3064-3074. doi:10.1007/s00167-016-4230-y.
- [2] Ghanem E, Parvizi J, Burnett RSJ, Sharkey PF, Keshavarzi N, Aggarwal A, et al. Cell count and differential of aspirated fluid in the diagnosis of infection at the site of total knee arthroplasty. *J Bone Joint Surg Am.* 2008;90:1637-1643. doi:10.2106/JBJS.G.00470.
- [3] Higuera CA, Zmistrovski B, Malcom T, Barsoum WK, Sporer SM, Mommsen P, et al. Synovial fluid cell count for diagnosis of chronic periprosthetic hip infection. *J Bone Joint Surg Am.* 2017;99:753-759. doi:10.2106/JBJS.16.00123.
- [4] Jacovides CL, Parvizi J, Adeli B, Jung KA. Molecular markers for diagnosis of periprosthetic joint infection. *J Arthroplasty.* 2011;26:99-103.e1. doi:10.1016/j.arth.2011.03.025.
- [5] Parvizi J, Aljianipour P, Berbari E, Hickok N, Phillips KS, M Shapiro I, et al. Novel developments in the prevention, diagnosis, and treatment of periprosthetic joint infections. *J Am Acad Orthop Surg.* 2015;23 Suppl:S32-S43. doi:10.5435/JAAOS-D-14-00455.
- [6] Collins I, Wilson-MacDonald J, Chami G, Burgoyne W, Vineyakam P, Berendt T, et al. The diagnosis and management of infection following instrumented spinal fusion. *Eur Spine J.* 2008;17:445-450. doi:10.1007/s00586-007-0559-8.
- [7] Lee YS, Koo K-H, Kim HJ, Tian S, Kim T-Y, Maltenfort MG, et al. Synovial fluid biomarkers for the diagnosis of periprosthetic joint infection: a systematic review and meta-analysis. *J Bone Joint Surg Am.* 2017;99:2077-2084. doi:10.2106/JBJS.17.00123.
- [8] Mason JB, Fehring TK, Odum SM, Griffin WL, Nussman DS. The value of white blood cell counts before revision total knee arthroplasty. *J Arthroplasty.* 2003;18:1038-1043.
- [9] Saleh A, Ramanathan D, Siqueira MBP, Klika AK, Barsoum WK, Rueda CAH. The diagnostic utility of synovial fluid markers in periprosthetic joint infection: a systematic review and meta-analysis. *J Am Acad Orthop Surg.* 2017;25:763-772. doi:10.5435/JAAOS-D-16-00548.
- [10] Kevin Ko J-W, Namdar S. The diagnosis and management of periprosthetic joint infections of the shoulder. *Oper Tech Orthop.* 2016;26. doi:10.1053/j.oto.2015.12.001.
- [11] Ricchetti E, Frangiamore S, Grossi M, Alolabi B, Saleh A, W. Bauer T, et al. Diagnosis of periprosthetic infection after shoulder arthroplasty: a critical analysis review. *J Bone Joint Surg.* 2013;1:e3. doi:10.2106/JBJS.
- [12] Matsen FA, Russ SM, Bertelsen A, Butler-Wu S, Pottinger PS. Propionibacterium can be isolated from deep cultures obtained at primary arthroplasty despite intravenous antimicrobial prophylaxis. *J Shoulder Elbow Surg.* 2015;24:844-847. doi:10.1016/j.jse.2014.10.016.
- [13] Singh JA, Sperling JW, Schleck C, Harmsen W, Cofield RH. Periprosthetic infections after shoulder hemiarthroplasty. *J Shoulder Elbow Surg.* 2012;21:1304-1309. doi:10.1016/j.jse.2011.08.067.
- [14] Grossi MJ, Frangiamore SJ, Yakubek G, Bauer TW, Iannotti JP, Ricchetti ET. Performance of implant sonication culture for the diagnosis of periprosthetic shoulder infection. *J Shoulder Elbow Surg.* 2018;27:211-216. doi:10.1016/j.jse.2017.08.008.
- [15] Nodzo SR, Boyle KK, Bhimani S, Duquin TR, Miller AO, Westrich GH. Propionibacterium acnes host inflammatory response during periprosthetic infection is joint specific. *HSS J.* 2017;13:159-164. doi:10.1007/s11420-016-9528-2.
- [16] Parvizi J, Zmistrovski B, Berbari EF, Bauer TW, Springer BD, Della Valle CJ, et al. New Definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. *Clin Orthop Relat Res.* 2011;469:2992-2994. doi:10.1007/s11999-011-2102-9.
- [17] Christensen CP, Bedair H, Della Valle CJ, Parvizi J, Schurko B, Jacobs CA. The natural progression of synovial fluid white blood-cell counts and the percentage of polymorphonuclear cells after primary total knee arthroplasty: a multicenter study. *J Bone Joint Surg Am.* 2013;95:2081-2087. doi:10.2106/JBJS.L.01646.
- [18] Bedair H, Ting N, Jacovides C, Saxena A, Moric M, Parvizi J, et al. The Mark Coventry Award: diagnosis of early postoperative TKA infection using synovial fluid analysis. *Clin Orthop Relat Res.* 2010. doi:10.1007/s11999-010-1433-2.
- [19] Sperling JW, Kozak TK, Hanssen AD, Cofield RH. Infection after shoulder arthroplasty. *Clin Orthop Relat Res.* 2001;206-216.
- [20] Millett PJ, Yen Y-M, Price CS, Horan MP, van der Meijden OA, Elser F. Propionibacterium acnes infection as an occult cause of postoperative shoulder pain: a case series. *Clin Orthop Relat Res.* 2011;469:2824-2830. doi:10.1007/s11999-011-1767-4.

Authors: Luis E. Cortes Jiménez, Vani Sabesan, Gerald Williams

QUESTION 4: Is there a role for synovial cytokines in the diagnosis of shoulder periprosthetic (PJI)?

RECOMMENDATION: While not yet widely available, evaluation of cytokine levels in synovial fluid shows promise in clarifying the probability of shoulder PJI. See Questions 2 and 5 (Section 1.2. Prevention: Intraoperative) for discussion of specific cytokine evaluations.

LEVEL OF EVIDENCE: Limited

DELEGATE VOTE: Agree: 100%, Disagree: 0%, Abstain: 0% (Unanimous, Strongest Consensus)

RATIONALE

Although the majority of previous literature on the use of cytokines for PJI diagnosis was focused on hip and knee arthroplasty [1-4],

there are a number of recent publications regarding shoulder PJI [5-13]. It is established that shoulder PJI is often caused by less viru-

lent organisms than those in the hip or knee [5,7,12,14] with the most common microorganisms being- *Cutibacterium acnes* and coagulase negative Staph. Therefore, even though shoulder PJI might share some common characteristics to hip and knee PJI, a direct comparison is not suitable and more research specific to shoulder PJI is needed to establish concrete guidelines for the role of cytokines in these diagnoses [2,8,12].

Literature regarding cytokines (including interleukins IL-2, IL-4, IL-6, IL-8, IL-10) shows consensus that IL-6 is the most relevant cytokine biomarker for predicting shoulder PJI. Evidence supports that IL-6 has a sensitivity and specificity of approximately 90% and 95% respectively, as well as improved diagnostic accuracy when combined with IL-8 and IL-10 [7,9,11,15]. However, there remains some controversy regarding the use of IL-6 to determine resolution of infection after antibiotic and surgical treatment of PJI [16,17]. Applying this to current Musculoskeletal Infection Society criteria, IL-6 may be a useful adjunct however for diagnosis of resolution of infection although determination of resolution of infection still requires negative cultures and return of C-reactive protein and erythrocyte sedimentation rate to normal levels [11]. Cytokines were found to have the highest correlations with positive frozen sections [7], suggesting that the combination of cytokines and frozen sections may be a possible avenue for recommendations. The use of lateral flow immunoassay technique (QuickLine IL-6 Test) for IL-6 during surgery allows for rapid assessment of synovial fluid [17], but while it provides an acceptable specificity (97.6%), it has a weaker sensitivity (46.9%) [6].

Several published reports [7,9] describe cytokines as a strong predictor for shoulder PJI: one study with level 2 evidence [9], two level 3 [7,6], one level 4 [18], and one of level 5 [17]. The cutoffs for what constitutes a positive test are not well established and based on the frequently minimal inflammatory response to shoulder PJI, as suggested by Frangiamore et al., cytokine values for the diagnosis of shoulder PJI will likely be lower than those established for hip or knee infections. It also must be considered that there are studies reporting no infection with a cutoff under 10,000 pg; making imperative the need for other diagnostic tools for the assessment of shoulder PJI.

Although synovial fluid cytokines show promise as a preoperative or intraoperative tool to diagnose shoulder PJI, further validation is needed in the setting of shoulder PJI specifically, appropriate cutoff values must be further defined, and the tests must become rapid, affordable and widely available in order to truly impact clinical care.

REFERENCES

- [1] Grosso MJ, Frangiamore SJ, Saleh A, Kovac MF, Hayashi R, Ricchetti ET, et al. Poor utility of serum interleukin-6 levels to predict indolent periprosthetic shoulder infections. *J Shoulder Elbow Surg.* 2014;23:1277-1281. doi:10.1016/j.jse.2013.12.023.
- [2] Randau TM, Friedrich MJ, Wimmer MD, Reichert B, Kuberra D, Stoffel-Wagner B, et al. Interleukin-6 in serum and in synovial fluid enhances the differentiation between periprosthetic joint infection and aseptic loosening. *PloS One.* 2014;9:e89045. doi:10.1371/journal.pone.0089045.
- [3] Wimmer MD, Ploeger MM, Friedrich MJ, Bornemann R, Roessler PP, Gravius S, et al. The QuickLine IL-6 lateral flow immunoassay improves the rapid intraoperative diagnosis of suspected periprosthetic joint infections. *Technol Health Care.* 2016;24:927-932. doi:10.3233/THC-161247.
- [4] Bauer TW, Parvizi J, Kobayashi N, Krebs V. Diagnosis of periprosthetic infection. *J Bone Joint Surg Am.* 2006;88:869-882. doi:10.2106/JBJS.E.01149.
- [5] Ahmad SS, Shaker A, Saffarini M, Chen AF, Hirschmann MT, Kohl S. Accuracy of diagnostic tests for prosthetic joint infection: a systematic review. *Knee Surg Sports Traumatol Arthrosc.* 2016;24:3064-3074. doi:10.1007/s00167-016-4230-y.
- [6] Ricchetti ET, Frangiamore SJ, Grosso MJ, Alolabi B, Saleh A, Bauer TW, et al. Diagnosis of periprosthetic infection after shoulder arthroplasty: a critical analysis review. *JBJS Rev.* 2013;1. doi:10.2106/JBJS.RVW.M.00055.
- [7] Frangiamore SJ, Saleh A, Grosso MJ, Farias Kovac M, Zhang X, Daly TM, et al. Neer Award 2015: analysis of cytokine profiles in the diagnosis of periprosthetic joint infections of the shoulder. *J Shoulder Elbow Surg.* 2017;26:186-196. doi:10.1016/j.jse.2016.07.017.
- [8] Marschall J, Lane MA, Beekmann SE, Polgreen PM, Babcock HM. Current management of prosthetic joint infections in adults: results of an Emerging Infections Network survey. *Int J Antimicrob Agents.* 2013;41:272-277. doi:10.1016/j.ijantimicag.2012.10.023.
- [9] Frangiamore SJ, Saleh A, Kovac MF, Grosso MJ, Zhang X, Bauer TW, et al. Synovial fluid interleukin-6 as a predictor of periprosthetic shoulder infection. *J Bone Joint Surg Am.* 2015;97:63-70. doi:10.2106/JBJS.N.00104.
- [10] Jacovides CL, Parvizi J, Adeli B, Jung KA. Molecular markers for diagnosis of periprosthetic joint infection. *J Arthroplasty.* 2011;26:99-103.e1. doi:10.1016/j.arth.2011.03.025.
- [11] Parvizi J, Aljianipour P, Berbari E, Hickok N, Phillips KS, M Shapiro I, et al. Novel developments in the prevention, diagnosis, and treatment of periprosthetic joint infections. *J Am Acad Orthop Surg.* 2015;23 Suppl:S32-S43. doi:10.5435/JAAOS-D-14-00455.
- [12] Kevin Ko J-W, Namdar S. The diagnosis and management of periprosthetic joint infections of the shoulder. *Oper Tech Orthop.* 2016;26. doi:10.1053/j.oto.2015.12.001.
- [13] Rahmi H, Burkhead W, Itamura J. Current treatments in periprosthetic shoulder infections. *Curr Orthop Pract.* 2017;28:524. doi:10.1097/BCO.0000000000000567.
- [14] Zmistowski B, Della Valle C, Bauer TW, Malizos KN, Alavi A, Bedair H, et al. Diagnosis of periprosthetic joint infection. *J Orthop Res.* 2014;32 Suppl 1:S98-S107. doi:10.1002/jor.22553.
- [15] Xie K, Dai K, Qa X, Yan M. Serum and synovial fluid interleukin-6 for the diagnosis of periprosthetic joint infection. *Sci Rep.* 2017;7:1496. doi:10.1038/s41598-017-01713-4.
- [16] Saleh A, Ramanathan D, Siqueira MBP, Klika AK, Barsoum WK, Rueda CAH. The diagnostic utility of synovial fluid markers in periprosthetic joint infection: a systematic review and meta-analysis. *J Am Acad Orthop Surg.* 2017;25:763-772. doi:10.5435/JAAOS-D-16-00548.
- [17] Frangiamore SJ, Siqueira MBP, Saleh A, Daly T, Higuera CA, Barsoum WK. Synovial cytokines and the MSIS criteria are not useful for determining infection resolution after periprosthetic joint infection explantation. *Clin Orthop Relat Res.* 2016;474:1630-1639. doi:10.1007/s11999-016-4710-x.
- [18] Ricchetti ET, Frangiamore SJ, Grosso MJ, Alolabi B, Saleh A, Bauer TW, et al. Diagnosis of periprosthetic infection after shoulder arthroplasty: a critical analysis review. *JBJS Rev.* 2013;1. doi:10.2106/JBJS.RVW.M.00055.

Authors: Joseph Iannotti, Victor Naula, Eric Ricchetti

QUESTION 5: Is there a role for synovial fluid tumor necrosis factor-alpha (TNF- α) and interleukin (IL)-2 in the diagnosis of shoulder periprosthetic joint infection (PJI)?

RECOMMENDATION: There is a potential role for synovial fluid TNF- α and IL-2 in the diagnosis of shoulder PJI when interpreted in combination with other synovial fluid markers. TNF- α and IL-2 may not be as useful individually.

LEVEL OF EVIDENCE: Limited

DELEGATE VOTE: Agree: 96%, Disagree: 0%, Abstain: 4% (Unanimous, Strongest Consensus)